
1

SOUNDSQUARES

0423

COMMAND AND SCRIPTING REFERENCE
APRIL 2023

2CONTENTS

INTRODUCTION

PATCHING BASICS
REFERENCING RECIPIENTS

SOUNDSQUARES VIRTUAL MACHINE
REGISTERS AND VARIABLES
ENTRY-POINTS AND LABELS

FLOW CONTROL
STACK OPERATIONS
MULTITHREADING

REGISTER AND PARAMETER RESOLUTION
ABSTRACT RESOLUTION

INDIRECTION AND POINTERS

COMMAND DICTIONARY
PATCH COMMANDS
MACRO COMMANDS

SCRIPTING COMMANDS

EXAMPLES

3INTRODUCTION

SoundSquares uses a hybrid commandline/scripting language to store
presets and customise its functionality. As well as using the host’s
regular storage, patch import and export is achieved using text files.

The language is configured as a series of commands with each command
starting on a new line. The syntax is structured that each command starts
with a verb followed by options consisting of recipients and parameters.

SoundSquares scripts run on an internal virtual machine with instructions
stored in a simplified assembler-style language format. Anyone familiar with
coding ASM for Z80 6502 or i86 will find it reasonably straight-forward and
readable, although for a beginner it may be a little difficult to approach.

This document sets-out the commands that both sides of the system accept
- the patch side and the scripting side. Both are related, with the caveat
that whilst patches and macros files can contain and run ASM scripting
commands, only scripting files can be used to load collections of functions
for later use. Furthermore, scripts are capable of composing and triggering
patch and macro commands ON-THE-FLY.

The Command-Line-Interface panel (CLI) accepts all commands, and offers
additional functionality and tracer-feedback to help in constructing and
debugging patches, macros, and scripts.

4

Assuming a known blank state, patches work by issuing the commands
required to reconstruct a given setup. This is where things like the number
of ROOMS, TARGETS, SOURCES, and GROUPS are determined, along with their
positions on the stage, levels, phase, mute/solo status, colours, and so-on.

All aspects of the current patch configuration are setup by patching
commands, including DSP functionality.

The format is broadly, as follows :

Lines starting with # or ; are comments :

	 #############################
	 # start of script
	 # leave some information here

Commands are structured into verbs, recipient nodenames, and parameters,
and are separated by a single space character :

	 [VERB] [RECIPIENT] [PARAMETERS]

or in other words :

	 [DO_SOMETHING] [TO_THIS] [USING_THIS]

Where

	 [DO_SOMETHING] 	is a keyword/verb describing the action

	 [TO_THIS] 		 is the name of a node (or nodes) which are
				 the recipient(s) of the verb

	 [USING_THIS] 	 is the set of parameters informing the verb

for example:

	 POS S1 X:100 Y:100

is the command to position the node called S1 at coordinates of X:100 and
Y:100

	 POS 		 : VERB
	 S1		 : RECIPIENT
	 X:100		 : PARAMETER
	 Y:100		 : PARAMETER

PATCHING BASICS

5

In addition to the recipient being a single node (SOURCE/TARGET/GROUP/ROOM),
recipients can be multiple. Consider the following command :

	 COLOUR S1 S2 S3 RED:1.0 GREEN:0.0 BLUE:0.0

This translates as “set the RGB colour of nodes named S1 S2 and S3”.

Node names can be combined into a grouped recipient string, with a single
space character separating the node names.

As well as using node names to identify recipients, numerical bracketings
can be used as follows :

	 ()		 Round braces contain SOURCE indeces
	 []		 Square braces contain GROUP indeces
	 {}		 Curly braces contain TARGET indeces
	 <>		 Angle braces contain ROOM indeces

such that :

	 COlOUR (0 1 2) RED:1.0 GREEN:0.0 BLUE:0.0

will set SOURCES 0, 1, and 2 to the specified colour, and :

	 MUTE [4 5 6]

will mute GROUPS 4, 5, and 6

Furthermore, multiple recipient groups can be used in a command string :

	 MUTE (0 1 2) [4 5 6]

will mute SOURCES 0, 1, and 2 as well as GROUPS 4, 5, and 6

In addition to referencing recipients by their names and numerical indeces,
bracketing also enables the use of the wildcard ‘...’ meaning ALL, such that

	 MUTE (...)

will mute all SOURCES ...

and, as you might suspect ...

	 MUTE (...) [...]

will mute all SOURCES and all GROUPS.

REFERENCING RECIPIENTS

6

On top of the named, indexed and wildcard references, SVM also understands
a collection of named groupings. Using the SOLO command as example, we
already know that :

	 SOLO NODE_NAME

will solo the named node, and :

	 SOLO (12)

will solo the indexed node.

The following multi-select reference names work as follows :

	 MARQUEE		 INCLUDES EVERYTHING ‘UNDER’ THE MARQUEE
			 SUCH THAT:
				 NODE’S LAYER IS VISIBLE
				 NODE’S LAYER IS NOT LOCKED
				 NODE IS NOT HIDDEN
				 NODE IS LOCATED WITH THE MARQUEE

	 SOURCES		 ONLY SOURCES UNDER MARQUEE
	 GROUPS		 ONLY GROUPS UNDER MARQUEE
	 TARGETS		 ONLY TARGETS UNDER MARQUEE

	 SELECTION		 ALL CURRENTLY SELECTED NODES
	
	 SYNDICATION	 ALL NODES IN CURRENT SYNDICATION SET

	 (...)			 ALL SOURCES REGARLESS HIDE & LOCK STATUS
	 [...]			 ALL SOURCES REGARLESS HIDE & LOCK STATUS
	 {...}			 ALL SOURCES REGARLESS HIDE & LOCK STATUS
	 <...>			 ALL SOURCES REGARLESS HIDE & LOCK STATUS

	 ALL_SOURCES	 SYNONYM FOR (...) 	 -> IF NOT LOCKED OR HIDDEN
	 ALL_GROUPS		 SYNONYM FOR [...] 	 -> IF NOT LOCKED OR HIDDEN
	 ALL_TARGETS	 SYNONYM FOR {...} 	 -> IF NOT LOCKED OR HIDDEN		
	 ALL_ROOMS		 SYNONYM FOR <...> 	 -> IF NOT LOCKED OR HIDDEN

MULTI-SELECT REFERENCING

7SOUNDSQUARES VIRTUAL MACHINE

The SoundSquares Virtual Machine (SVM) consists of a simulated CPU capable
of executing a variety of commands using an assembler-like syntax similar
to Z80 6502 6800 and 8080 style of early microcomputer.

It can be called from the CLI, and also from SCRIPTS, and is capable
of addressing the patch system using the same commands as patch files.
Furthermore, the SVM is capable of remixing these commands on-the-fly
and can programmatically control the SoundSquares STAGE, NODES, and DSP
settings : anything that can be done with patching, can also be done with
scripting.

When scripts are loaded from files, they can be used to extend the built-
in functionality of the CLI, such that named entry points can be called
directly from the CLI as if they are built-in commands. Calling a script
function triggers the script-level thead to run until completion, or until
terminated via the CLI.

In addition to directly running a “root” script thread, SVM can operate
in a pseudo multi-threaded manner, which whilst not multi-tasking in the
true sense, does offer the possibility that multiple scripts can run “at
the same time”, isolated from each other in variable scope, and capable of
communicating with each other.

The ASM code is sectioned into LABELS which can be arbitrarily called
or jumped to, and form the entry-points for script access from the CLI.
Scripting LABELS can therefore be used to build higher-level functional
constructs, which can in-turn trigger each-other in order to create a
logical flow of action controlling items on the stage, dsp-parameter, panel-
positions and so-on.

The SoundSquares MACRO-PANEL is a place where cutomised interface elements
can be drawn by using specific marco-panel instructions, and when combined
with ASM code enables a situation such that additional mini-interfaces for
controlling scripts can be constructed.

8VIRTUAL MACHINE BASICS : REGISTERS AND VARIABLES

Unlike a regular CPU, SVM’s vCPU is composed without registers!

Instead, any variable declaration is treated as if it is a register, whether
that is a discrete variable, or a pointer to a node’s parameter, So rather
than jumping straight-in and being able to instantly manipulate registers,
they must first be declared.

VARIABLE/REGISTER DECLARATION :

	 INT		 [NAME] [INT]			 -> create an integer register
	 FLOAT		 [NAME] [FLOAT]			 -> create a float register
	 STRING	 [NAME] [STRING]			 -> create a string register

	 DEL		 [NAME]				 -> delete a register

such that:

	 INT MY_INT 123

creates a variable/register called “MY_INT” of type integer and value 123.

and :

	 FLOAT MY_FLOAT 14.764

creates a variable/register called “MY_FLOAT” of type float and value 14.764

Naturally, then :

	 STRING MY_STRING HERE’S SOME TEXT

creates the variable/register “MY_STRING” of type string and right ?

The command DEL will remove the register from the current scope.

To list the current set of registers in the CLI, use :

	 LIST_VARS

or, for short :

	 LV

A read-out of registers/variables will be printed to the CLI output.

9

SVM ASM uses two types of labels which operate both as entry-points and as
jump-points within a script :

	 >>LABEL_NAME				 INTENDED FOR ENTRY-POINTS

and

	 ->SUB_LABEL_NAME			 INTENDED FOR SCRIPTING JUMP-POINTS

However, there is no real semantic difference between the two - they simply
serve to offer a little organisational clarity when writing scripts.

To view which script labels are currently in memory and accessible from the
CLI, use the command :

	 LIST_LABELS

or, for short :

	 LL

A read-out of entry-points and script labels will be printed to the CLI
output.

NOTE : labels starting with “_” are hidden from the print-out.

When a script is loaded using the command LOAD_SCRIPT [FILENAME], if it
contains a label “>>MAIN” then this is automatically called as a scripting
entry-point to initiate some action.

ENTRY-POINTS AND LABELS

10FLOW CONTROL

When a script executes, it runs from the plugin’s GUI thread from a timer.
Everytime the timer is called, each script (or thread) is called, and runs
until it reaches an end-point, or signals a jump-repeat. In order for the
script not to cripple the GUI with a huge list of calls, and thus cause
the GUI thread to hang, it is important to know how flow control actively
facilitates this.

When a label is called, the script will run from there until it reaches
either a return, or end, command, as follows :

	 CALL		 [LABEL_NAME]	 -> run script from entry-point

	 RTN					 -> return program-counter to
						 -> continue execution from line after
						 -> the CALL command

	 END					 -> end current execution

BUT if a script is required to keep running over time, it will also need to
be able to jump, and that jump will trigger a small delay in the script so
that the plugin GUI can continue to operate even though the command-flow
continues. To do so, use the JUMP command :

	 JUMP		 [LABEL_NAME]

In addition to the JUMP command, another way of preventing the script from
crippling the GUI is to use a PAUSE command, to temporarily suspend the
script whilst it waits for a certain amount of milliseconds :

	 PAUSE		 [MS]

And for the sake of old-time-completeness, there is the no-operation
command, which simply triggers a short delay, and is a synonym for pausing
for 1 millisecond :

	 NOP

In order to combat the potential for scripts to become very slow, by
having to JUMP (pause) all the time, and assuming they have a valid end-
point in the form of RTN, END, JUMP, PAUSE or NOP, the GOTO command can be
used to trigger the equivalent of a JUMP command, but without causing a
delay to the script.

	 GOTO		 [LABEL_NAME]

Any script or thread which reaches the recursion depth limit will
automatically be terminated for the sake of protecting the main GUI thread.

11STACK OPERATIONS

The vCPU contains a stack 1024 variables deep. Unlike a traditional CPU
stack, which runs in bytes, SVM’s stack contains full variables, so an INT
or a FLOAT or a STRING can be pushed and popped in-full from the stack
using the simple commands :

	 PUSH		 [A]			 -> push a variable onto the stack
	 POP		 [A]			 -> pull a variable from the stack

*where [A] is the NAMED REGISTER/VARIABLE

To see the current state of the stack, use the following command :

	 PRINT_STACK

or, for short :

	 PS

A read-out of stack variables will be printed to the CLI output.

In addition to pushing and popping named variables, immediate values can
also be used, as follows :

	 PUSHI		 [TYPE] [i]		 -> push an immediate onto the stack
	 POPI		 [A]			 -> pop from stack new variable

*where [TYPE] is either INT, FLOAT, or STRING
and [i] is the IMMEDIATE value

Values can also be moved between variables using
	
	 MOV		 [A] [B]		 -> move value from B into A
	 MOVI		 [A] [i]		 -> move immediate into A
	 SWAP		 [A] [B]		 -> swap values of A and B

*where [A] and [B] represent any two named variables of the same type
and [i] represents an immediate value.

	 -> FOR MOV :
	 -> If the type of [B] does not match the type of [A]
	 -> [A]’s type is reassigned to [B]’s type

	 -> to ‘cast’ a value from float to int, it can be
	 -> resolved to an immediate and used with MOVI
	 -> see below for PARAMETER RESOLUTION

12MULTITHREADING

The vCPU is capable of running multiple isolated threads, meaning that
multiple scripts can be run “simultaneously”. Excluding the root scripting
thread, 64 discrete threads can be run :

	 DISPATCH	 [ENTRY-POINT] [THREAD NAME]

Starts a thread runing from the named entry-point, with the optional
thread name for management purposes. If no thread name is provided, the
thread gets called the same as the entry-point.

	 READY		 [ENTRY-POINT] [THREAD NAME]

Configures a thread ready to run from the named entry-point, but instead of
running it, puts it into suspended status to be later resumed :

	 SUSPEND	 [THREAD NAME]
	 RESUME	 [THREAD NAME]

- do exactly what you’d expect, in pausing and unpausing a named thread.

To kill a thread and stop it dead in its tracks, use the following :

	 TERMINATE	 [THREAD NAME]

To see the current list of threads, use the following command :

	 THREAD_INFO

or, for short :

	 TI

To communicate between threads, the TELL command is used. It triggers the
command payload to be executed in the context of the thread it names.

Note that there are no timing guarantees, other than to say that when the
targeted thread is next called, or resumed, the command will have been
executed.

	 TELL		 [THREAD NAME] [COMMAND STRING]

for example :

	 TELL RUNNER MOVI VAR_1 1.234

will set the variable VAR_1 to 1.234 in thread named RUNNER

13REGISTER AND PARAMETER RESOLUTION

When using scripting to programmatically construct patches, register values
can be resolved as immediates by using the $ prefix. Consider the following
script :

>>MAIN
space nodes at interval 100 ON X from -450 onwards
start positions
FLOAT X -450.0
FLOAT Y 200.0
FLOAT X_INCREMENT 100.0
recipient node base-name
STRING _S S
start and end values for loop
INT INDEX 0
INT COUNT $STAGE.NUM_SOURCES
variable for constructing dynamic node name
STRING NAME

start a loop to position the nodes
->LOOP_POINT

build node name concatenating index as string onto name
MOV NAME _S
ADDI NAME $INDEX
NAME now equals S0, S1, S2, etc

do the positioning action
POS $NAME X:$_X Y:$_Y

increment index counter and setup next node position
INC INDEX
ADD X X_INCREMENT

loop if we’ve not run out of nodes
CMP_LTE INDEX COUNT GOTO LOOP_POINT

exit at end of script
END

Using $STAGE.NUM_SOURCES dereferences the number of sources into register
COUNT. $INDEX is used as an immediate value to build the name of each node
targeted by the action, and in the action, $X and $Y are used to get the
register contents (position variables in this case) into the command.

Note : when resolving register values into ASM commands, they are treated
as immediate values, hence the following comparison operations equivolate :

	 CMP_LTE INDEX COUNT GOTO LOOP_POINT
	 CMP_LTEI INDEX $COUNT GOTO LOOP_POINT

They both perform the comparison (Less Than Equal) - the first by looking
at the variable itself, and the second by treating it as an immediate since
it is resolved by the lexing/parsing stage prior to reaching the execution
engine.

14SCRIPTS VS THREADS & EXTENDED CALLS

Whilst superficially, scripts and threading might look identical, there are a
few important differences, primarily around speed of execution.

The scripting engine gets called by a timer in the gui thread. Every time
the timer is called, if there are commands waiting, they are then executed.

-> A script executes at the rate of one command per timer call.
-> A thread can execute upto 1000 commands per timer call.

In addition to using the CALL command to trigger a script or thread to
move its program pointer to a new label, the command parsing engine will
automatically attempt to a command to a label if the command is not found
as part of the built-in lexicon.

consider the following :

	 ->MY_LABEL				 -> LABEL NAME
	 INT A 10				 -> SET INTEGER VARIABLE A AS 10
	 INT B 20				 -> SET INTEGER VARIABLE B AS 10
	 ADD A B				 -> ADD B TO A
	 MOVE S1 X:$A			 -> MOVE SOURCE S1 BY A IN X
	 RTN					 -> RETURN FROM FUNCTION

Cannonically this function label would be run by using : CALL MY_LABEL
BUT can also be called direct, using : MY_LABEL

Further extending this usage, such ‘bypass-calls’ can also make use of
auto-pushed immediates, and can therefore behave more like a regular
scripting language. Consider the following:

	 ->MY_LABEL				 -> LABEL NAME
	 POPI B				 -> POP VALUE FOR B
	 POPI A				 -> POP VALUE FOR A
	 ADD A B				 -> ADD B TO A
	 MOVE S1 X:$A			 -> MOVE SOURCE S1 BY A IN X
	 RTN					 -> RETURN FROM FUNCTION

This function emands that values for A and B are on the stack, otherwise
they will be populated as ZERO-VALUE INTS as a result of their POPI
commands. To run requires :

	 PUSHI INT 20			 -> PUSH VALUE FOR A
	 PUSHI INT 10			 -> PUSH VALUE FOR B
	 CALL MY_LABEL			 -> CALL THE FUNCTION

Using a bypass-call, the same can be achieved by issuing :

	 MY_LABEL 20 10

15EXTENDED CALLS

In the above example, the bypass-call automatically PUSHIs the INT values
20 and 10 onto the stack before the call, and assumes the function will
correctly POP, so as to avoid stack overflow.

Variable types are resolved to INT, FLOAT, AND STRING on the basis of :

	 All characters are DIGITS						 -> INT
	 First character is DIGIT and there’s also a “.”		 -> FLOAT

	 otherwise									 -> STRING

16REGISTER AND PARAMETER RESOLUTION

In addition to the lexer/parser resolving variables from the scope of
script-call it also resolves values associated with nodes and stage items.

See the ASM section for more details on how this all comes-together ... but
for now, know that, for example :

	 FLOAT F $SOURCE_1.X	
	 results in a float variable being created
	 using the immediate value of SOURCE_1.X

Node parameters that can be accessed this way are lised below, and further
interface elements accessible this way are listed under the section on
POINTERS and ALIASES

SOURCE TARGET GROUP ROOM

X X X X X

Y X X X X

LEVEL X X X X

SIZE X

DB X X X X

MUTE X X X X

SOLO X X X X

VISIBLE X X X

PHASE X X X X

RED X X X X

GREEN X X X X

BLUE X X X X

ROTATES X

ROTATION X

MOVES X

DX X

DY X

RESPONSE X

W X

H X

Casting variables from STRING to FLOAT or INT and back again, is a simple
matter of overwriting any existing variable as if defining the variable for
the first time, and resolving the required variable name into it:

		 FLOAT F 4.56	 -> make a FLOAT with value 4.56
		 STRING S $F	 -> S = “4.56”
		 INT I $S		 -> I = 5

17ABSTRACT RESOLUTION

The parser/lexer is also capable of doubly-resolving strings contaning
parameter names, by using $$ as follows :

	 STRING RM <0>
	 # string contains name of first room

	 # resolve the .X and .Y of the room into registers X and Y
	 FLOAT X $$RM.X
	 FLOAT Y $$RM.Y

Let’s assume the first room in the patch is called “ROOM_1”

At the command FLOAT X $$RM.X :

The first $ of the string $$RM.X resolves into :

	 $ROOM_1.X

Which in turn is resolved into an immediate value containing the X
coordinate of ROOM_1

To the execution engine the commands are transformed into :

	 FLOAT X -400.00
	 FLOAT Y -350.00

This resolution syntax can also be used to combine strings with ints and
floats to create a pseudo-pointer-style approach to programatic scripting,
which can also be used in flow control.

Names of commands can also be parsed on-the-fly from strings, such as :

	 INT A 10
	 INT B 5
	 INT C 0
	 STRING ACTION_1 ADD
	 STRING ACTION_2 SUB
	 MOV C A
	 $ACTION_1 C B					 -> ADD C B
	 $ACTION_2 A B					 -> SUB A B
	 END

The result of this is :

	 A = 5
	 B = 5
	 C = 15

18INDIRECTION AND POINTERS

Whilst the SVM resolves and dereferences both scripting variables and
node parameters into function calls, it can sometimes be useful to assign
pointers as script variables, such that an ASM command has an immediate
impact on the node parameter without the need to call a full patching
command. This is achieved by aliasing using :

	 ALIAS		 [NAME]	 [NODE.PARAMETER]

Which creates (or overwrites) a register/variable pointing directly to
the parameter, such that the following script snippets perform the same
function :

	 # SVM redirection :
	 FLOAT _X 100
	 FLOAT _Y 200
	 POS (0) X:$_X Y:_Y

	 # POINTER indirection :
	 ALIAS _X (0).X
	 ALIAS _Y (0).Y
	 MOVI _X 100
	 MOVI _Y 200

Both scripts position source node 0 at X/Y coordinates 100/200.

The first example relies on the parsing engine to dereference script
variables when formulating a POS command, and the second example directly
controls the X and Y variables of the node itself.

As with non-pointer registers/variables, aliased registers/variables can
access all other ASM functions. Internally the SVM uses pointers inside
registers/variables such that a non-pointer register/variable uses a pointer
to its own inner parameter.

Aliased registers/variables can therefore also be pushed/popped from/to the
stack ... moved, swapped, compared ... and so on.

Currently, only INT and FLOAT pointed registers are available, and their
type and indirection is automatically handled by the parsing/lexing engine.

19INDIRECTION / POINTERS

The following tables shows which node parameters can be used in pointers :

INT parameters :

SOURCE TARGET GROUP ROOM

X X X X X

Y X X X X

W X

H X

LEVEL X X X X

PHASE X X X X

SIZE X

RESPONSE X

ROTATION X

DX X

DY X

RED X X X X

GREEN X X X X

BLUE X X X X

SOURCE TARGET GROUP ROOM

MUTE X X X X

SOLO X X X X

VISIBLE X X X

ROTATES X

MOVES X

VIRTUAL X X

FLOAT parameters :

-> NOTE : THIS WILL GROW AS SOUNDSQUARES DEVELOPS MOVING-FORWARDS ...

20
STAGE.

[INT]
STAGE.NUM_SOURCES
STAGE.NUM_GROUPS
STAGE.NUM_TARGETS
STAGE.NUM_ROOMS
STAGE.ROTATION
STAGE.MOVEMENT
STAGE.SHOW_ROOMS
STAGE.SHOW_TARGETS
STAGE.SHOW_SOURCES
STAGE.SHOW_GROUPS
STAGE.SHOW_CABLES
STAGE.SHOW_XHAIRS
STAGE.SHOW_ANNOTATIONS
STAGE.LOCK_STAGE
STAGE.LOCK_ROOMS
STAGE.LOCK_TARGETS
STAGE.LOCK_GROUPS
STAGE.LOCK_SOURCES
STAGE.LOCK_ANNOTATIONS
STAGE.SOURCE_CLIPPING
STAGE.TARGET_CLIPPING

[FLOAT]
STAGE.MOUSE_X
STAGE.MOUSE_Y
STAGE.OFFSET_X
STAGE.OFFSET_Y

GLOBAL.

[INT]
GLOBAL.MOUSE_X
GLOBAL.MOUSE_Y
GLOBAL.GUI_W
GLOBAL.GUI_H
GLOBAL.DSP_MODE
GLOBAL.OVERSAMPLE
GLOBAL.OVERSAMPLING_FILTER
GLOBAL.SYNDICATION_MODE
GLOBAL.XFTIME
//GLOBAL.VERSION_STRING

[FLOAT]
GLOBAL.RESPONSE
GLOBAL.MASTER_LEVEL

TO DO >>>

[INT] 	 SOURCE.DELAY.ENABLED
[FLOAT] 	 SOURCE.DELAY.TIME

[INT]		 SOURCE.FILTERS.ENABLED
[FLOAT] 	 SOURCE.FILTER[0].FREQ
[FLOAT] 	 SOURCE.FILTER[0].GAIN
[FLOAT] 	 SOURCE.FILTER[0].BW
[INT] 	 SOURCE.FILTER[0].ENABLED

[INT]		 SOURCE.DYNAMICS.ENABLED
[INT]		 SOURCE.DYNAMICS.MODE
[FLOAT]	 SOURCE.DYNAMICS.ATTACK
[FLOAT]	 SOURCE.DYNAMICS.RELEASE
[FLOAT]	 SOURCE.DYNAMICS.THRESHOLD
[FLOAT]	 SOURCE.DYNAMICS.RATIO
[FLOAT]	 SOURCE.DYNAMICS.MAKEUP
[FLOAT]	 SOURCE.DYNAMICS.KNEE
[INT]		 SOURCE.DYNAMICS.SIDECHAIN
[INT]		 SOURCE.DYNAMICS.SIDECHAIN_LOCATION

PANEL.

[INT]

[FLOAT]

SE
CT
IO
N
IN
CO
MP
LE
TE

21

SERIAL.

[INT]		 SERIAL.IS_CONNECTED
[INT]		 SERIAL.PORT_ID
[STRING]	 SERIAL.PORT_NAME
[STRING]	 SERIAL.PORTS[n].NAME

MARQUEE/SELECTION/SYNDICATION

[INT]
MARQUEE.NUM_ITEMS			 COUNT

MARQUEE.ITEMS[n].INDEX		 NODE INDEX
MARQUEE.ITEMS[n].TYPE			 TYPE OF

SELECTION.NUM_ITEMS			 COUNT
SELECTION.ITEM[n].INDEX		 NODE INDEX
SELECTION.ITEM[n].TYPE			 TYPE OF

SYNDICATION.NUM_ITEMS		 COUNT
SYNDICATION.ITEM[n].INDEX		 NODE INDEX
SYNDICATION.ITEM[n].TYPE		 TYPE OF

[STRING]
MARQUEE.ITEMS[n].NAME			 NAME OF
SELECTION.ITEM[n].NAME		 NAME OF
SYNDICATION.ITEM[n].NAME		 NAME OF

SE
CT
IO
N
IN
CO
MP
LE
TE

22PATCH COMMANDS - ONE-SHOT

One-shot commands consisting of just a single verb :

	 BIG_CLI
		 TOGGLES LARGER CLI_TEXT AT THE BOTTOM OF THE SCREEN

	 CLS
		 CLEARS THE CLI TEXT DISPLAY

	 CLEANUP
		 SANITISE NAMING TO PREVENT CLI MISFIRES

	 COPY_DYNAMICS
		 COPY CURRENT DYNAMICS FROM PANEL TO CLIPBOARD

	 COPY_FILTER
		 COPY CURRENT FILTER FROM PANEL TO CLIPBOARD

	 DRAW_IN_MACRO
		 MOVE THE DRAWING FOCUS TO THE MACRO PANEL

	 DRAW_WITH_STAGE
		 MOVE THE DRAWING FOCUS TO (ON-TOP-OF) THE STAGE

	 FLAT_ZOOM_IN
		 STRAIGHT ZOOM, TAKING NO ACCOUNT OF STAGE DISPLACEMENT

	 FLAT_ZOOM_OUT
		 STRAIGHT ZOOM, TAKING NO ACCOUNT OF STAGE DISPLACEMENT

	 FULLSCREEN
		 ENTER/LEAVE FULLSCREEN MODE ON SCREEN WHERE MOUSE IS

	 HARD_RESET	
		 ANIHILATE THE PATCH IN A GLOBAL RESET

	 LIST_CABLES
		 PRINT LIST OF CABLES

	 LIST_LABEL 	 (ALIAS : LL)
		 PRINT CURRENTLY LOADED SCRIPT LABELS

	 LITS_VARS		 (ALIAS : LV)
		 PRINT SCRIPT VARIABLES FOR CURRENT CONTEXT

	 LOAD_MACRO_FILE
		 LOAD PATCH USING FILE OPEN DIALOG

	 NEXTPAGE
		 MOVE TO THE NEXT GUI PAGE

23PATCH COMMANDS - ONE-SHOT

	 NO_PANELS
		 HIDE ALL PANELS EXCEPT TOOLBOX AND MASTER METERS

	 PRINT_SELECTED
		 PRINTS LIST OF CURRENT SELECTED NODE

	 PRINT_STACK	 (ALIAS : PS)
		 PRINTS CURRENT STACK STATUS

	 PROTECT_THREAD
		 PREVENT THIS THREAD FROM BEING NUKED BY TERMINATE COMMAND

	 RESET_ALL_NAMES
		 SOURCES = S1, S2, S3 : GROUPS = G, TARGETS = T, ROOMS = R
	
	 PASTE_DYNAMICS
		 PASTE CLIPBOARD DYNAMICS TO THE SELECTED NODE’S DYNAMICS

	 PASTE_FILTER
		 PASTE CLIPBOARD FILTER TO THE SELECTED NODE’S FILTERS

	 PREVIOUSPAGE
		 MOVE TO THE PREVIOUS GUI PAGE
	
	 RESET_DE
		 RESET ALL DELAY SETTINGS
	
	 RESET_DY
		 RESET ALL DYNAMICS SETTINGS
	
	 RESET_F
		 RESET ALL FILTER SETTINGS
	
	 RESET_FF
		 RESET ALL FEEDBACK SETTINGS
	
	 RESET_PANELS
		 PUT ALL PANELS INTO DEFAULT STATE

	 RESET_SELECT
		 REMOVE ALL ITEMS FROM ALL SELECTIONS

	 RESET_TOOLBOX
		 PUT TOOLBOX INTO DEFAULT STATE, DEFEATING ALL INDICATORS
		 -> ALSO DISMISSES MASTER ROTATION AND MOVEMENT
	
	 RESET_V
		 RESET ALL VIRTUALISATION SETTINGS

24PATCH COMMANDS - ONE-SHOT

	
	 SAMPLE_RATE	 (ALIAS : SR)
		 PRINT THE CURRENT SAMPLE RATE

	 SAVE_NOW
		 SAVE SETTINGS TO CURRENTLY LOADED PATCH FILE

	 SAVE_PATCH
		 SAVE SETTINGS TO PATCH FILE USING DAVE FILE DIALOG

	 STOP_MACRO
		 PREVENTS FURTHER PROCESSING OF PATCH OR MACRO FILE

	 STEALTH
		 HIDE ALL PANELS AND GUI DECORATIONS

	 SYSTEM_INFO	 (ALIAS : SI)
		 PRINTS THE CPU-SPEC AND WINDOWS LAYOUT

	 TERMINATE
		 END ALL CURRENTLY RUNNING (UNPROTECTED) THREADS

	 THREAD_INFO	 (ALIAS : TI)
		 PRINTS CURRENT THREADING CONFIGURATION

	 UNDO
		 UNDO LAST COMMAND (ONLY POSITIONS, LEVELS, COLOURS)

	 UNPROTECT_THREAD
		 REMOVE PROTECTION FROM THIS THREAD

	 WRAP
		 ENCAPSULATE CURRENT SELECTION IN MARQUEE

	 ZOOM_IN
		 ZOOM IN A STEP (*1.1 MAGNIFICATION)

	 ZOOM_OUT
		 ZOOM OUT A STEP (/1.1 MAGNIFICATION)

25PATCH COMMANDS - COMMON PARAMETERS

The following common named parameters are used for a variety of commands,
in the form of NAME:VALUE pairs :

	 NAME			 COMMON USAGE

	 X:			 NODE X POSITION
	 Y:			 NODE Y POSITION
	 W:			 ROOM WIDTH
	 H:			 ROOM HEIGHT
	 I:			 INDEX
	 RED:			 NODE COLOUR
	 GREEN:		 NODE COLOUR
	 BLUE:			 NODE COLOUR
	 R:			 RESERVED - CURRENTLY UNUSED
	 S:			 NODE COLOUR USING H:S:L
	 L:			 COLOUR USING H:S:L, ANNOTATION ALPHA

	 TIME:			 DELAY TIME

	 BAND:			 FILTER BAND INDEX
	 TYPE:			 FILTERS AND DYNAMICS PROCESSORS TYPE
	 G:			 FILTER GAIN SETTING
	 F:			 FILTER FREQUENCY SETTING
	 BW:			 FILTER BANDWIDTH SETTING

	 ATTACK:		 DYNAMICS ATTACK TIME
	 RELEASE:		 DYNAMICS RELEASE TIME
	 THRESHOLD:		 COMPRESSOR/GATE/LIMITER THRESHOLD dB
	 RATIO:		 COMPRESSOR RATIO
	 KNEE:			 COMPRESSEOR/GATE/LIMITER KNWW
	 LIMIT:		 LIMITER LIMIT
	 SIDECHAIN:		 DYNAMICS SIDECHAIN CHANNEL
		
		 X1: 		 USED FOR SPECIFYING DYNAMICS CURVE SHAPE		
		 Y1:
		 X2:
		 Y2:
		 X3:
		 Y3:
		 X4:
		 Y4:
		 X5:
		 Y5:

NOTE : This is just a guide - there are also other uses of these, and
commands which use additional NAME:VALUE parameter schemes - but you’ll
encounter these perhaps more ...

26PATCH COMMANDS - SPATIAL LAYOUT

The following commands are used to configure the stage, and position and
colour nodes :

SET		 : CONTROL THE NUMBERS OF NODES	

	 SYNTAX	 : SET [ID] [COUNT]
	 [ID]	 :
		 : NUM_SOURCES
		 : NUM_TARGETS
		 : NUM_GROUPS
		 : NUM_ROOMS

	 EXAMPLE	 : SET NUM_SOURCES 14

RESET		 : RESET A NODE TO ‘FACTORY’ SETTINGS

	 SYNTAX	 : RESET [NODES]
	 EXAMPLE	 : RESET S1 S2 S3
			 : RESET [...]

NAME		 : (RE)NAME NODE(S)

	 SYNTAX	 : NAME [NODES] [NEW_NAME]
	 EXAMPLE	 : NAME T1 MY_TARGET
			 : NAME <0> ROOM_ZERO
	
	 -> FOR MULTIPLE NODES, NAMES ARE INDEXED AND
	 -> APPENDED WITH “_i” WHERE i = INDEX
	 -> NODE_1 NODE_2 NODE_3 ETC
	 -> IF NEW NAME ENDS IN “_” THEN INDEXING STARTS AT 1st NODE
	 -> ELSE STARTS AT 2nd NODE
	 -> NODE NAMES CANNOT BEGIN WITH NUMBERS
	 -> MULTIPLE NODES CANNOT SHARE THE SAME NAME

POS		 : ABSOLUTE POSITIONING OF NODES ON THE STAGE

	 SYNTAX	 : POS [NODES] [VARS]
	 EXAMPLE	 : POS S1 X:20 Y:-10
			 : POS GROUP1 Y:100
		
	 -> THE ORIGIN POINT 0,0 IS IN THE CENTRE OF THE STAGE
	 -> WHERE THE GRID X-HAIRS ARE BRIGHTEST AND THIS APPLIES
	 -> REGARDLESS OF STAGE X/Y DISPLACEMENT

27PATCH COMMANDS - SPATIAL LAYOUT

MOVE		 : RELATIVE MOVE NODES ON THE STAGE

	 SYNTAX	 : MOVE [NODES] [VARS]
	 EXAMPLE	 : MOVE S1 X:20 Y:-10
			 : MOVE GROUP1 Y:100

SWAP_POS	 : SWAP POSITION OF FIRST 2 NAMED NODES

	 SYNTAX	 : SWAP_POS [A] [B]
	 EXAMPLE	 : SWAP_POS S1 S2

TRANSPORT	: (ABSOLUTE) MOVE ROOM INCLUDING CONTENTS

	 SYNTAX 	 : TRANSPORT [ROOM] [VARS]
	 EXAMPLE	 : TRANSPORT ROOM_1 X:-200 Y:-600

ALIGN 	 : LINES-UP OBJECTS	

	 SYNTAX	 : ALIGN [NODES] [VARS]
	 [VARS]	 : TOP / MIDDLE / BOTTOM / LEFT / CENTRE / RIGHT
	
	 EXAMPLE 	 : ALIGN SYNDICATION TOP
			 : ALIGN S1 T1 GROUPS CENTRE

SPACING	 : DISTRIBUTE NODES EVENLY

	 SYNTAX	 : SPACING [NODES] [VAR]
	 VAR		 : HORIZONTAL / VERTICAL

CIRCLE	 : ARRANGE NODES IN A CIRCLE USING EXTREMITIES OF
		 NODE X/Y POSITIONS AS DELIMITER OF PERIMETER

	 SYNTAX	 : CIRCLE [NODES]
	 EXAMPLE	 : CIRCLE (...)

	 -> POSITION A NODE AT EACH CORNER OF THE BOUNDING-BOX
	 -> OF THE CIRCLE, WITH ALL OTHER NODES INSIDE THE BOUNDING

28PATCH COMMANDS - SPATIAL LAYOUT

OVAL		 : ARRANGE NODES IN AN OVAL USING EXTREMITIES OF
			 NODE X/Y POSITIONS AS DELIMITER OF PERIMETER

	 SYNTAX	 : OVAL [NODES]
	 EXAMPLE	 : OVAL {...}

	 -> POSITION A NODE AT EACH CORNER OF THE BOUNDING-BOX
	 -> OF THE OVAL, WITH ALL OTHER NODES INSIDE THE BOUNDING

SNAP		 : SNAP NODES TO NEAREST GRID POINT

	 SYNTAX	 : SNAP [NODES]
	 EXAMPLE	 : SNAP GROUP_1

EXPAND	 : GROW THE POSITIONS OF A SET OF NODE
		 AWAY FROM THEIR SHARED CENTRE

	 SYNTAX	 : EXPAND [NODES]
	 EXAMPLE	 : EXPAND S1 S2 S3 S4

CONTRACT	 : SHRINK THE POSITION OF A SET OF NODES
		 TOWARDS THEIR SHARED CENTRE

	 SYNTAX	 : CONTRACT [NODES]
	 EXAMPLE	 : CONTRACT {0 1 2 3}

HIDE		 : HIDE NODES
UNHIDE	 : UNHIDE NODES

	 SYNTAX	 : HIDE [NODES]
	 EXAMPLE	 : HIDE SYNDICATION
			 : HIDE SOURCE_1

PRESET_COLOUR	 : USE ONE OF 20 PREDEFINE COLOURS

 	 SYNTAX	 : PRESET_COLOUR [NODES] 1-20
	 EXAMPLE	 : PRESET_COLOUR ROOM_1 12
		
	 -> SOURCES TARGETS AND GROUPS SHARE ONE SET OF COLOUR PRESETS
	 -> ROOMS HAVE A SEPARATE, DARKER SET

29PATCH COMMANDS - SPATIAL LAYOUT

COLOUR	 : SELECT A COLOUR FOR NODES USING WINDOWS COLOUR-PICKER

	 SYNTAX	 : COLOUR [NODES]
	 EXAMPLE	 : COLOUR SUBWOOFERS

	 -> ALL SELECTED NODES GET THE SAME COLOUR
	 -> CRASH ALERT -> THIS SHOULD NOT BE USED IN A PATCH
	 -> BUT INSTEAD CALLED FROM A MACRO OR A SCRIPT ...
	 -> OR SCRIPTED BUTTON ...
	 -> OR A TYPED CLI COMMAND

RGB		 : SET SPECIFIED COLOUR VALUES TO NODE

	 SYNTAX	 : RGB [NODES] RED:VALUE GREEN:VALUE BLUE:VALUE
	 EXAMPLE	 : RGB SYNDICATION RED:0.8 GREEN:0.5 BLUE:0.4

SPECTRUM	 : SPREAD A SPECTRUM OF COLOUR ACROSS NODES

	 SYNTAX	 : SPECTRUM [NODES] (OPT)
	 (OPT)		 : S:0.0-1.0 -> COLOUR SATURATION
	 EXAMPLE	 : SPECTRUM [...] 0.7

REDRAW	 : TURN ON/OFF DRAWING OUTPUT RESPONSES

	 SYNTAX	 : REDRAW (OPT)
	 (OPT)		 : ON / OFF
	 EXAMPLE 	 : REDRAW ON
			 : REDRAW OFF

ROOM_TO_MARQUEE	: PLACE A ROOM AT THE MARQUEE

	 SYNTAX	 : ROOM_TO_MARQUEE [OPT]
	 [OPT]		 : INDEX (0 to 7) OR NAME OF ROOM
	 EXAMPLE	 : ROOM_TO_MARQUEE 0
			 : TOOM_TO_MARQUEE MY_MIX_ROOM

30PATCH COMMANDS - MIX AND LEVELS

LEVEL		 : SET THE ABSOLUTE dB LEVEL OF A NODE

	 SYNTAX	 : LEVEL [NODES] [dB]
	 EXAMPLE 	 : LEVEL S1 -6
			 : LEVEL [...] 3

TRIM		 : CHANGE THE RELATIVE dB LEVEL OF A NODE

	 SYNTAX	 : TRIM [NODES] [dB]
	 EXAMPLE 	 : TRIM S1 -7
			 : TRIM (...) 2

MUTE		 : MUTES OBJECTS
UNMUTE	 : UNMUTES OBJECTS

	 SYNTAX	 : MUTE [NODES]
	 EXAMPLE 	 : MUTE SOURCE_1
			 : UNMUTE MARQUEE

SOLO		 : SOLOS OBJECTS
UNSOLO	 : UNSOLOS OBJECTS USING THE SAME SYNTAX

	 SYNTAX	 : SOLO [NODES]
	 EXAMPLE 	 : SOLO ROOM_1
			 : UNSOLO SYNDICATION

PHASE		 : CHANGE THE PHASE OF A NODE

	 SYNTAX	 : PHASE [NODES] *[-1 .. +1)
	 EXAMPLE	 : PHASE SOURCE_1 -1
			 : PHASE GROUP_1
	
	 -> PHASE INDICATION IS OPTIONAL
	 -> IF NOTHING SPECIFIED, PHASE SET TO NEUTRAL/+1/POSITIVE

VIRTUALISE	: CHOOSE WHICH VIRTUAL I/O EQUATES TO WHICH SOURCE/TARGET

	 SYNTAX 	 : VIRTUALSISE [SOURCE/TARGET NODE] [VIRTUAL INDEX]
	 EXAMPLE 	 : VIRTUALS TARGET_1 17

31PATCH COMMANDS - MIX AND LEVELS

USE_GLOBAL	: WHETHER OR NOT TARGET[S] USES LOCAL OR GLOBAL RESPONSE

	 SYNTAX	 : USE_GLOBAL [TARGETS] (VAR)
	 (VAR)		 : YES/TRUE/GLOBAL/1 | NO/FALSE/LOCAL/0
	 ALIAS		 : GLOBALZ
	 EXAMPLE	 : USE_GLOBAL {9 10} FALSE
			 : GLOBALZ {0 1 2 3 4 5 6 7 8} TRUE

SET_ZERO	 : SET THE ZEROPOINT RESPONSE DISTANCE FOR TARGET[S]

	 SYNTAX	 : SET_ZERO (TARGETS) (DISTANCE)
	 (TARGETS)	 : IF NO TARGET SPECIFIED, GLOBAL RESPONSE IS SET
	 EXAMPLE	 : SET_ZERO 250				 (GLOBAL)
	 EXAMPLE	 : SET_ZERO SUBWOOFER 600 		 (LOCAL)

SET_SIZE	 : SET THE SIZE FOR SOURCE

	 SYNTAX	 : SET_SIZE [SOURCES] (SIZE)
	 EXAMPLE	 : SET_SIZE SOURCE_7 2.3

	 -> THE SIZE PARAMETER FOR SOURCES ACTS AS A MULTIPLIER
	 -> OF RESPONSE DISTANCE OF ALL TARGET NODES IT MIXES TO

SET_MASTER : SET MASTER VOLUME ABSOLUTE dB (RANGE -200 to +12)
SET_MASTERV : SET MASTER VOLUME ABSOLUTE VALUE (RANGE 0 to 4)
TRIM_MASTER : TRIM MASTER VOLUME BY dB (RANGE +/-60)

	 SYNTAX	 : SET_MASTER -6.0
	 EXAMPLE	 : TRIM_MASTER 3.6

32PATCH COMMANDS - CABLES

CABLE		 : ESTABLISH A CABLE CONNECTING [SOURCES] TO [TARGETS]

	 SYNTAX	 : CABLE [SOURCES] [TARGETS] [X:dB]
	 EXAMPLE	 : CABLE S1 T1 -3
			 : CABLE (0 1 2 3) {4 5 6 7} -12

	 -> IF DB NOT SPECIFIED LEVEL DETERMINED BY SOURCE->TARGET DISTANCE
	 -> WHICH MAINTAINS THE CURRENT MIX VIA LOCATION
	 -> IF THIS IS NOT APPLICABLE, DEFAULT LEVEL IS -6DB

UNCABLE	 : REMOVE ALL CABLES FROM [NODES]

	 SYNTAX	 : UNCABLE [NODES]
	 EXAMPLE	 : UNCABLE SOURCE_1
			 : UNCABLE (...)

			
CABLE_LEVEL : SET ABSOLUTE DB LEVEL OF CABLE

	 SYNTAX	 : CABLE_LEVEL [SOURCE] [TARGET]	[dB]
	 EXAMPLE	 : CABLE_LEVEL SOURCE_1 TAGRET_1 -22

REMOVE_CABLE : REMOVE SPECIFIED CABLE BETWEEN SOURCE AND TARGET

	 SYNTAX	 : REMOVE_CABLE [SOURCES] [TARGETS]

REMOVE_CABLES : REMOVE CABLES FROM NAMED NODES

	 SYNTAX	 : REMOVE_CABLES [SOURCES] [TARGETS]
	 EXAMPLE	 : REMOVE_CABLES (...) SUB_1 SUB_2

			
EXCLUDE_CABLE : SET SPECIFIC CABLE TO EXCLUSION MODE

	 SYNTAX	 : EXCLUDE_CABLE [SOURCE] [TARGET] (OPTION)
	 (OPTION)	 : [yes/no | true/false | 1/0]

	 -> IF OPTION NOT SPECIFIED, CABLE IS SET TO EXCLUSION MODE

EXCLUDE_CABLES : EXCLUDE ALL CABLES SOURCES->TARGETS

	 -> SAME SYNTAX AS EXCLUDE_CABLE

LIST_CABLES	 : PRINT LIST OF CABLES

33PATCH COMMANDS - MIX TOGGLES

The following commands all trigger toggles in the mix and follow a similar
syntax :

TOGGLE_MUTE	 : APPLIES TO SOURCES TARGETS GROUPS AND ROOMS
		
	 OPTION 	 : MUTE/YES/ON/1/TRUE | UNMUTE/NO/OFF/0/FALSE]

TOGGLE_SOLO	 : APPLIES TO SOURCES TARGETS GROUPS AND ROOMS
	
	 OPTION 	 : SOLO/YES/ON/1/TRUE | UNSOLO/NO/OFF/0/FALSE]

TOGGLE_PHASE	 : APPLIES TO SOURCES TARGETS GROUPS AND ROOMS
	
	 OPTION 	 : NORMAL/1/FORWARDS | ANTIPHASE/-1/REVERSE]

	 EXAMPLE	 : TOGGLE_MUTE (0 1 2) TRUE
			 : TOGGLE_SOLO GROUP_1 FALSE
			 : TOGGLE_PHASE ROOM_1 ANTIPHASE

TOGGLE_HIDE	 : APPLIES TO SOURCES TARGETS AND GROUPS NODES
TOGGLE_HIDE_ALL	: APPLIES TO EVERYTHING UNDER MARQUEE
			 : SYNONYM FOR TOGGLE_HIDE MARQUEE

	 EXAMPLE	 : TOGGLE_HIDE {...}
			 : TOGGLE_HIDE_ALL

TOGGLE_ROTATION	: APPLIES TO GROUPS
TOGGLE_MOVEMENT	: APPLIES TO GROUPS

	 EXAMPLE	 : TOGGLE_ROTATION GROUP_1
			 : TOGGLE_MOVEMENT GROUP_2

TOGGLE_CABLE_MUTE 		 [SOURCE] [TARGET] (YES/NO | TRUE/FALSE | 1/0)
TOGGLE_CABLE_SOLO 		 [SOURCE] [TARGET] (YES/NO | TRUE/FALSE | 1/0)
TOGGLE_CABLE_PHASE 		 [SOURCE] [TARGET] (-1/1)

TOGGLE_CABLE_USE_GROUP	 [SOURCE] [TARGET] [YES/NO | TRUE/FALSE | 1/0]

	 -> WHEN A CABLE IS SET TO NOT USE GROUP
	 -> GROUP VCA SETTINGS ON THE SOURCE
	 -> DO NOT IMPACT THIS CABLE

34PATCH COMMANDS - GROUPIFICATION

GROUPIFY	 : ADD SOURCES TO A GROUP NODE

	 SYNTAX	 : GROUPIFY [SOURCES] [GROUP]
	 EXAMPLE	 : GROUPIFY (...) GROUP_1	

	 -> ONLY A SINGLE GROUP NAME IS ALLOWED ...
	 -> ALTHOUGH MULTIPLE SOURCES CAN BE USED

UNGROUP	 : REMOVE NAMED SOURCES FROM GROUPS, OR EMPTY NAMED GROUPS

	 SYNTAX	 : UNGROUP [NODE]
	 EXAMPLE	 : UNGROUP GROUP_1

UNGROUPIFY	: UNGROUP SPECIFIED GROUPINGS

	 SYNTAX	 : UNGROUP [NODES]
	 EXAMPLE	 : UNGROUP S2 S3 S4 GROUP_1

	 -> AS WITH GROUPIFY, MULTIPLE SOURCES CAN BE USED
	 -> BUT ONLY A SINGLE GROUP

SET_ROTATION	 : EXPLICIT SETTING OF GROUP ROTATION

	 SYNTAX	 : SET_ROTATION [GROUP] [S:SPEED] (OPTION)
	 (OPTION)	 : ON | OFF | TRUE | FALSE | YES | NO
	 EXAMPLE	 : SET_ROTATION GROUP_1 S:0.1
			 : SET_ROTATION GROUP_1 S:0.1 ON
			 : SET_MOVEMENT GROUP_2 FALSE

SET_MOVEMENT	 : EXPLICIT SETTING OF GROUP MOVEMENT

	 SYNTAX	 : SET_ROTATION [GROUP] [X:SPEED Y:SPEED] (OPTION)
	 (OPTION)	 : ON | OFF | TRUE | FALSE | YES | NO
	 EXAMPLE	 : SET_MOVEMENT GROUP_1 X:1.1 Y:-1.5 ON
			 : SET_MOVEMENT GROUP_1 OFF

35PATCH COMMANDS - TOOLBOX AND FEATURES

TOGGLE	 : TOGGLE VARIOUS ASPECTS OF THE TOOLBOX AND INTERFACE

	 SYNTAX	 : TOGGLE [OPTION]
	 [OPTION]	 : ROOM_VISIBILITY | TARGET_VISIBILITY | GROUP_VISIBILITY |
			 SOURCE_VISIBILITY | CABLE_VISIBILITY | X_HAIR_VISIBILITY
			 GRID_VISIBILITY | ANNOTATION_VISIBILITY
			 ROOM_LABELS | TARGET_LABELS | GROUP_LABELS
			 SOURCE_LABELS | STAGE_LOCKS | ROOM_LOCKS
		 	 TARGET_LOCKS | GROUP_LOCKS | SOURCE_LOCKS
			 ANNOTATION_LOCKS | GUI_SNAP | VISUALISATIONS
		 	 ROTATION | MOVEMENT | TOOLBOX | MASTER | DEBUG
			 HEATMAP | FULLSCREEN | STEALTH
		 	 AUTO_SAVE | AUTO_BACKUP
	 EXAMPLE	 : TOGGLE ANNOTATION_VISIBILITY

	 -> ROTATION & MOVEMENT APPLIES TO GLOBAL-LEVEL SWITCHES
	 -> AND NOT INDIVIDUAL GROUPS - SEE SET_ROTATION AND SET_MOVEMENT

DISMISS	 : DISMISS SWITCHES (MATCHING THOSE IN THE TOOLBOX)

	 SYNTAX	 : DISMISS [OPTION]
	 [OPTION]	 : SOURCE_MUTES | SOURCE_SOLOS
			 TARGET_MUTES | TARGET_SOLOS
			 GROUP_MUTES | GROUP_SOLOS
			 ROOM_MUTES | ROOM_SOLOS
			 CABLE_MUTES | CABLE_SOLOS
			 SOURCE_CLIPPING | TARGET_CLIPPING
			 FULLSCREEN
	 EXAMPLE	 : DISMISS SOURCE_CLIPPING

ENTER		 : USE TEXT ENTRY TO EDIT SETTINGS

	 SYNTAX	 : ENTER [OPTION]
	 [OPTION]	 : SOURCE_COUNT | TARGET_COUNT | GROUP_COUNT | ROOM_COUNT
	 EXAMPLE	 : ENTER SOURCE_COUNT

	 -> CRASH ALERT -> THIS SHOULD NOT BE USED IN A PATCH
	 -> BUT INSTEAD CALLED FROM A MACRO OR A SCRIPT ...
	 -> OR SCRIPTED BUTTON ...
	 -> OR A TYPED CLI COMMAND

RESET_TOOLBOX	 : RESET THE TOOLBOX TO ITS ‘FACTORY’ STATE

36PATCH COMMANDS - SELECTION AND SYNDICATION

The following commands deal with node selection and syndication. They
determine what happens when the parsing engine auto-dereferences thr
keywords “SELECTION” and “SYNDICATION”.

ADDSELECT	 : ADD LISTED NODES TO SELECTION
	
	 SYNTAX 	 : ADDSELECT [NODES]
	 EXAMPLE	 : ADDSELECT (...)

UNSELECT	 : UNSELECT NAMED NODES AND MODIFY MARQUEE TO SELECTED NODES

	 SYNTAX	 : UNSELECT [NODES]
	 EXAMPLE	 : UNSELECT SOURCE_1

TOGGLE_SELECT : TOGGLE LISTED NODES IN-AND-OUT OF SELECTION

	 SYNTAX	 : TOGGLE_SELECT [NODES]
	 EXAMPLE	 : TOGGLE_SELECT {...}

SYN_MODE	 : SET SYNDICATION MODE

	 SYNTAX	 : SYN_MODE [MODE]
	 [MODE]	 :
		 NONE		 : NO SYNDICATION IS APPLIED TO MOUSE ACTIONS
		 MARQ		 : ONLY NODES UNDER MARQUEE ARE SYNDICATED
		 SELECT	 : ONLY NODES IN CURRENT SELECTION ARE SYNDICATED
		 BOTH		 : BOTH MARQUEE AND SELECTION ARE IN SYNDICATION

STORING SELECTIONS - SETTING-UP SYNDICATION GROUPINGS

	 STORE_SELECT [SLOT]		 : SAVE SELECTION TO SLOT
	 RETRIEVE_SELECT [SLOT]	 : RETRIEVE SELECTION FROM SLOT
	 SWITCH_SELECT [SLOT]		 : STORE CURRENT, GET SLOT

	 EXAMPLE		 : STORE_SELECT 4

RESET_SELECT	 : RESET ALL SELECTION SLOTS

	 -> THIS CLEARS/RESETS ALL SELECTIONS IN ALL SLOTS

PRINT_SELECTED	 : PRINTS THE CURRENT SELECTION

37PATCH COMMANDS - SELECTION AND SYNDICATION

WRAP			 : ENCAPSULATE CURRENT SELECTION IN MARQUEE

TOUCH		 : SIMULATE CLICKING ON A NODE TO SHOW IT’S PANEL SETUPS

	 SYNTAX	 : TOUCH [NODE]
	 EXAMPLE	 : TOUCH SPEAKER_11

	 -> X-HAIRS WILL BE DIRECTED TO THIS NODE
	 -> ONLY THE FIRST NODE IN ANY [LIST] IS TOUCHED

38PATCH COMMANDS - CONTROLLING PANELS

The following commands are used to control the position, size, and content
of the function panels. Whilst these are generally used at patch load/save
time, they also may be useful in writing scripts aimed at extending the
functionality of SoundSquares :

SHOW_PANEL		 : SHOW NAMED PANEL
HIDE_PANEL		 : HIDE NAMED PANEL
TOGGLE_PANEL	 : SHOW/HIDE PANEL

	 SYNTAX	 :	 TOGGLE_PANEL [PANEL]
	 [PANEL]	 :	 VIRTUAL | DELAY | FILTERS | DYNAMICS
				 MUTES | ENVELOPES | SCOPE | FFT
				 MASTER | TOOLBOX | CLI

PANEL_SETUP	 : CONFIGURE A PANEL

 	 SYNTAX	 : PANEL_SETUP [PANEL] X:PX Y:PX W:PX H:PX S:SCALE(1 or 2)

	 -> PX VALUES ARE ALL PIXEL-COORDINATES
	 -> SCALE DETERMINES HOW LARGE THE PANEL CONTENTS ARE DISPLAYED

POSITION_PANEL_AT	 : MOVE A PANEL

	 SYNTAX	 : POSITION_PANEL_AT [PANEL] X:PX Y:PX
	 EXAMPLE	 : POSITION_PANEL_AT DYNAMICS X:-200 Y:-200

	 -> X:0 Y:0 IS AT THE CENTRE OF THE VIEW-WINDOW
	 -> THIS POSITIONS THE PANEL SO ITS CENTRE
	 -> IS PUT AT THE COORDINATES IN THE COMMAND

VIEW_ENVELOPES	 : SHOW ENVELOPES FOR NAMED NODES IN ENVELOPES PANEL

	 SYNTAX	 : VIEW_ENVELOPES [NODES]
	 EXAMPLE	 : VIEW_ENVELOPES LEFT RIGHT

	 -> SHOWS ENVELOPES FOR NAMED NODES
	 -> IF A GROUP IS NAMED, ONLY MEMBERS OF GROUPS ARE SHOWN

VERBOSE		 : TOGGLES DENSITY OF CLI RESPONSE TEXT		

	 SYNTAX	 : VERBOSE [0 or 1]
	 EXAMPLE	 : VERBOSE 0 					 -> CONCISE CLI (DEFAULT)
			 : VERBOSE 1 					 -> LONG-WINDED CLI

39PATCH COMMANDS - POSITIONING THE STAGE

The folllowing commands are used to control stage navigation and to switch
pages within the interface :

ZOOM_IN	 : ZOOM IN A STEP (*1.1 MAGNIFICATION)
ZOOM_OUT	 : ZOOM OUT A STEP (/1.1 MAGNIFICATION)

ZOOM_LEVEL	: ZOOM TO A SPECIFIED LEVEL

	 SYNTAX	 : ZOOM_LEVEL [0.5 - 4.0]
	 EXAMPLE	 : ZOOM_LEVEL 2.0

FLAT_ZOOM_IN	 : STRAIGHT ZOOM, TAKING NO ACCOUNT OF STAGE DISPLACEMENT
FLAT_ZOOM_OUT	 : STRAIGHT ZOOM, TAKING NO ACCOUNT OF STAGE DISPLACEMENT

DISPLACE_STAGE	 : MOVE THE VIEWING WINDOW RELATIVE TO STAGE CENTRE

	 SYNTAX	 : DISPLACE_STAGE X:PX Y:PY
	 EXAMPLE	 : DISPLACE_STAGE X:100 Y:100

	 -> POSITIONS THE CENTRE OF THE DISPLACE
	 -> OVER STAGE COORDINATE PX PY

FIND		 : FIND NAMED NODE

	 SYNTAX	 : FIND [NAME]
	 EXAMPLE	 : FIND GROUP_1

	 -> MOVES INTERFACE TO PUT NAMED NODE AT CENTRE OF SCREEN

40PATCH COMMANDS - SWITCHING PAGES

The following commands are used to control which page of the interface is
currently being viewed :

PAGE		 : TAKE THE GUI TO A NAMED PAGE

	 SYNTAX	 : PAGE [PAGE]
	 [PAGE]	 : STAGE | OUTPUTS | INPUTS | MATRIX | FEEDBACK
	 EXAMPLE	 : PAGE INPUTS

NEXT_PAGE		 : GO TO NEXT PAGE
PREVIOUS_PAGE	 : GO TO PREVIOUS PAGE

	 -> PAGE ORDER IS AS FOLLOWS :

		 STAGE
		 INPUTS
		 OUTPUTS
		 MATRIX
		 FEEDBACK

41PATCH COMMANDS - STAGE AND PAGE

The folllowing commands are used to control stage navigation and to switch
pages within the interface.

ZOOM_IN	 : ZOOM IN A STEP (*1.1 MAGNIFICATION)
ZOOM_OUT	 : ZOOM OUT A STEP (/1.1 MAGNIFICATION)

ZOOM_LEVEL	: ZOOM TO A SPECIFIED LEVEL

	 SYNTAX	 : ZOOM_LEVEL [0.5 - 4.0]
	 EXAMPLE	 : ZOOM_LEVEL 2.0

FLAT_ZOOM_IN	 : STRAIGHT ZOOM, TAKING NO ACCOUNT OF STAGE DISPLACEMENT
FLAT_ZOOM_OUT	 : STRAIGHT ZOOM, TAKING NO ACCOUNT OF STAGE DISPLACEMENT

DISPLACE_STAGE	 : MOVE THE VIEWING WINDOW RELATIVE TO STAGE CENTRE

	 SYNTAX	 : DISPLACE_STAGE X:PX Y:PY
	 EXAMPLE	 : DISPLACE_STAGE X:100 Y:100

	 -> POSITIONS THE CENTRE OF THE DISPLACE
	 -> OVER STAGE COORDINATE PX PY

FIND		 : FIND NAMED NODE

	 SYNTAX	 : FIND [NAME]
	 EXAMPLE	 : FIND GROUP_1

	 -> MOVES INTERFACE TO PUT NAMED NODE AT CENTRE OF SCREEN

42PATCH COMMANDS - PRE/POST MIXERS

The following commands are used to control which PRE and POST mixers.
For patches requiring a one-to-one relationship between SOURCE (as input
channel) and TARGET (as speaker) then these mixers are likely not being
used. However, when it comes to the equivalent of controlling multiple
output ‘headphone mixes’, or creating common side-chains, the PRE and POST
mixers offer an additional layer of processing.

INPUT_MIXER	 : SETUP THE PRE-MIXERS
OUTPUT_MIXER	 : SETUP THE POST-MIXERS

I/O mixers use both CHANNEL and PIN to index the member of the mix - PIN
indexing refers to the PLUGIN I/O pins, and CHANNEL indexing refers to the
individual channels within the I/O mixer itself.
	
	 SYNTAX	 : INPUT_MIXER [NODES] [ACTION] [OPT] [OPT]

	 [ACIONS]	 : FOR BOTH INPUT AND OUTPUT MIXERS

		 RESET			 : SET MIXER TO STRAIGHT-THROUGH ROUTING FOR 		
					 SINGLE INPUT PIN CORRESPONDING TO ITS INDEX		
		
		 NORMALISE		 : SET LEVEL OF ALL CHANNELS TO 1.0/CHANNEL-COUNT
		 LEVEL_MASTER	 : LEVEL MIX MASTER LVL 	 [dB-LEVEL]

		 LEVEL_CHANNEL	 : LEVEL A MIXER CHANNEL 	 [dB-LEVEL]
		 MUTE_CHANNEL	 : MUTE A MIXER CHANNEL 	 [INDEX]
		 UNMUTE_CHANNEL	 : MUTE A MIXER CHANNEL 	 [INDEX]
	 	 PHASE_CHANNEL	 : PHASE A MIXER CHANNEL 	 [+1 / -1]
		 REMOVE_CHANNEL	 : REMOVE A MIXER CHANNEL 	[INDEX]

		 ADD_PIN		 : ADD A I/O MIXER PIN	 [INDEX]
		 REMOVE_PIN		 : REMOVE I/O MIXER PIN	 [INDEX]
		 REPLACE_PIN	 : REPLACE PIN INPUT A <- B 	 [INDEX] [INDEX]
		 LEVEL_PIN		 : LEVEL A MIXER PIN		 [dB-LEVEL]
		 MUTE_PIN		 : MUTE A MIXER PIN		 [INDEX]
		 UNMUTE_PIN		 : UNMUTE A MIXER PIN		 [INDEX]
		 PHASE_PIN 		 : SWITCH PHASE OF PIN	 [INDEX]

	 [ACIONS]	 : FOR ONLY INPUT MIXERS

		 MID			 : SETUP MID CHANNEL FROM NAMED STEREO PAIR
		 SIDE			 : SETUP SIDE CHANNEL FROM NAMED STEREO PAIR

		 -> BOTH MID AND SIDE TAKE 2 INPUT INDEXES IN ORDER TO WORK

43PATCH COMMANDS - PRE/POST MIXERS

I/O mixer example commands, using S1 as the source channel, and therefore
refering to its INPUT_MIXER. Wtih the exception of MID and SIDE actions,
if using T1 as target channel, all of the following also apply to OUTPUT_
MIXER, except that terminology of Input and Output is reversed.

	 -> RESET S1 MIXER
		 INPUT_MIXER S1 RESET			

	 -> SET S1 MIXER’S MASTER LEVEL TO -6dB
		 INPUT_MIXER S1 LEVEL_MASTER -6.0

	 -> SET LEVEL OF PIN 4 ON S1’s MIXER TO -12dB
		 INPUT_MIXER S1 LEVEL_PIN 4 -12

	 -> ADD PIN 7 TO THE MIXER
		 INPUT_MIXER S1 ADD_PIN 7

	 -> REMOVE PIN 7 FROM THE MIXER
		 INPUT_MIXER S1 REMOVE_PIN 7

	 -> REMOVE CHANNEL 5 FROM THE MIXER
		 INPUT_MIXER S1 REMOVE_CHANNEL 5

	 -> INVERT PHASE OF PIN 7
		 INPUT_MIXER S1 PHASE_PIN 7 -1

	 -> INVERT PHASE OF CHANNEL 5
		 INPUT_MIXER S1 PHASE_CHANNEL 5 -1

	 -> CONFIGURE MIXER TO COMPOSE A MID CHANNEL FROM PINS 1 & 2
		 INPUT_MIXER S1 MID 1 2

	 -> CONFIGURE MIXER TO COMPOSE A SIDE CHANNEL FROM PINS 3 & 4
		 INPUT_MIXER S1 SIDE 3 4
	

44PATCH COMMANDS - DELAY

The following commands are used to control the delay processors
associated with each source and target node.

DELAY		 : SET THE DELAY STATUS FOR A NODE

	 SYNTAX	 : DELAY [NODES] [STATUS] TIME:(ms)
	 [STATUS]	 : ON | OFF
	 EXAMPLE 	 : DELAY S1 ON TIME:450
			 : DELAY S1 ON
			 : DELAY S1 OFF
			 : DELAY S1 TIME:-100

		
	 -> TIME: RANGE IS (-1000.00 to 1000.00) IN MILLISECONDS
	 -> EITHER, OR BOTH STATUS AND TIME CAN BE USE IN A COMMAND

	

45PATCH COMMANDS - FILTERS

The following commands are used to control the filter processors
associated with each source and target node.

FILTER	 : SET THE FILTERING STATUS FOR A NODE

-> CONFIGURE A FILTER SETUP

	 SYNTAX 	 : FILTER [NODES] [ENABLE] [BAND] [SETTINGS]
	 [ENABLE]	 : ENABLE indicates band is operational
	 [BAND]	 : 1 - 5
	 [SETTINGS]	: TYPE: F: G: BW:
		 TYPE :
			 HP : HIGH PASS
			 LP : LOW PASS
			 BP : BANDPASS
			 HS : HIGH SHELF
			 LS : LOW SHELF
			 PEAK : PEAKING/BELL
		 F	 : FREQUENCY (20-20000 HZ)
		 G	 : GAIN (dB)
		 BW	 : BANDWIDTH (0.1-5.0 OCTAVES)
	 EXAMPLE 	 : FILTER S1 BAND:1 ENABLE TYPE:HP F:839.11 G:12.00 BW:1.70

-> SWITCH ON OR OFF FILTERS FOR THIS NODE

	 SYNTAX	 : FILTER [NODES] [ON | OFF]

EQ_PRESET	: LOAD AN EQ PRESET INTO SELECTED NODE

	 SYNTAX	 : EQ_PRESET [OPTION]
	 [OPTION]	 : NAMED ‘CREATIVE’ PRESET (SEE EQ_PRESETS.TXT FOR DETAILS)
			 OR CROSSOVER PRESET USING THE FORM :	
				 [MODEL]_[TYPE]_[POLES]_[FREQ]
	 MODELS	 :
		 BS	 : BESSEL
		 BW	 : BUTTERWORTH
		 LR	 : LINKWITZ-RILEY
	 TYPE	:
		 LP	 : LOWPASS (FOR SUBS)
		 HP	 : HIGHPASS (FOR MAINS)
	 POLES	:
			 BS : 2/4/6/8		 BW : 2/4/6/8/10		 LR : 2/4/8
	 FREQ	:	 50 - 300HZ IN 25HZ INCREMENTS

-> SETUP A BESSEL FILTER, LOW-PASS, 4-POLES @ 125HZ ON NODE SUB_1 :

	 EXAMPLE	 : 	 EQ_PRESET SUB_1 BS_LP_4_125

			

46PATCH COMMANDS - FILTERS

COPY_FILTER	 : COPY THE CURRENT FILTER TO THE CLIPBOARD

		 SYNTAX	 : COPY_FILTER [NODE]

PASTE_FILTER	 : PASTE CLIPBOARD FILTER TO THE SELECTED NODE’S FILTERS

		 SYNTAX	 : PASTE_FILTER

RESETFILTERS	 : FLATTEN AND SWITCH-OFF THE FILTERS

		 SYNTAX	 : RESET_FILTERS [NODES]
		 EXAMPLE	 : RESET_FILTERS SOURCES

	

47PATCH COMMANDS - DYNAMICS

The following commands are used to control the dynamics processors
associated with each source and target node.

DYNAMICS	 : SETUP THE DYNAMICS PROCESSORS

	 SYNTAX	 : DYNAMICS [NODES] [ENABLED] [MODE] [PARAMS]
	 [ENABLED]	: ON | OFF
	 [MODE]	 : COMPRESSOR | GATE | LIMITER
			 COMPANDER | FREEFORM | FOLLOWER
			 SHAPER | EQ	
	 [PARAMS] 	:
			 ATTACK : MILLISECONDS
			 RELEASE : MILLISECONDS
			
			 COMPRESSOR 	 : THRESHOLD:	 [dB]
						 : RATIO:		 [1.0 to 100]
						 : KNEE:		 [dB]
			 GATE			 : THRESHOLD:	 [dB]
						 : KNEE:		 [dB]
						 : LIMIT:		 [dB]
			 LIMITER		 : LIMIT:		 [dB]
						 : KNEE:		 [dB]
			 COMPANDER		 : NODE POSITIONS X1:-X5, Y1:-Y5: in [dB]
			 FREEFORM		 : NODE POSITIONS X1:-X5, Y1:-Y5: in [dB]
			 FOLLOWER		 : NO PARAMETERS
			 SHAPER		 : NODE POSITIONS X1:-X5, Y1:-Y5: in [dB]
			 EQ			 : NO PARAMETERS
	 EXAMPLE :

DYNAMICS S1 ON COMPRESSOR ATTACK:10 RELEASE:130 THRESHOLD:-30 RATIO:1.000 KNEE:18.000

DYNAMICS S1 ON LIMITER ATTACK:250 RELEASE:250 KNEE:18.000 LIMIT:-20.625

	
	 SIMPLE OPERATION : SWITCH ON / OFF DYNAMICS NEEDS JUST :
		 DYNAMICS [NODES] [ENABLED]
	
DYNAMICS_MODE	 : CHANGE NODE’S DYNAMICS MODE

	 SYNTAX	 : DYNAMICS_MODE [NODES] [MODE]
	 [MODE]	 : COMPRESSOR | GATE | LIMITER
			 COMPANDER | FREEFORM | FOLLOWER
			 SHAPER | EQ	
	 EXAMPLE	 : DYNAMICS_MODE SUB_WOOFER LIMITER

48PATCH COMMANDS - DYNAMICS

SIDECHAIN		 : CONFIGURE THE SIDECHAIN FOR A DYNAMICS PROCESSOR	

	 SYNTAX	 : SIDECHAIN [NODE] INTERNAL (LOC)
			 : SIDECHAIN (FROM) (TO) (LOC)

	 (FROM)	 : NODE SUPPLYING THE SIDECHAIN
	 (TO)		 : NODE CONSUMING THE SIDECHAIN
	 (LOC) 	 : PRE_DELAY | PRE_FILTER | POST_FILTER | POST_DYNAMICS

	 EXAMPLE	 : SIDECHAIN SOURCE_1 SOURCE_2 POST_FILTER
			 SIDECHAIN SOURCE_1 TARGET_6 POST DYNAMICS

	 -> POST_FILTER IS THE DEFAULT SIDECHAIN LOCATION
	 -> POST_DYNAMICS SI ONLY APPLICABLE WHEN
	 -> A TARGET USES A SOURCE AS A SIDECHAIN

COPY_DYNAMICS	 : COPY DYNAMICS TO THE CLIPBOARD

	 SYNTAX	 : COPY_DYNAMICS [NODE]

PASTE_DYNAMICS	: PASTE DYNAMICS TO THE SELECTED DYNAMICS

	 SYNTAX	 : PASTE_DYNAMICS [NODE]	

RESETDYNAMICS	 : RESET AND SWITCH-OFF DYNAMICS PROCESSORS

	 SYNTAX	 : RESET_DYNAMICS [NAMES]
	 EXAMPLE	 : RESET_DYNAMICS SYNDICATION

49PATCH COMMANDS - DYNAMICS

The following commands are used to control feedback settings. They use a
similar mechanism to I/O mixers.

FEEDBACK		 : SETUP FEEDBACK PATH

	 SYNTAX	 : FEEDBACK [SOURCES] [TARGETS] [LEVEL]
	 [LEVEL]	 : dB

	 EXAMPLE	 : FEEDBACK MAIN_OUTPUT SOURCE_1 -6

REMOVE_FEEDBACK: REMOVE A FEEDBACK PATH BETWEEN SOURCES

	 SYNTAX	 : REMOVE_FEEDBACK [SOURCES] [TARGETS]
	 EXAMPLE	 : REMOVE_FEEDBACK SOURCE_1 MAIN_OUTPUT

NO_FEEDBACK 	 : REMOVE ALL FEEDBACK PATHS TO/FROM

	 SYNTAX	 : NO_FEEDBACK [NODE]
	 EXAMPLE	 : NO_FEEDBACK SOURCE_1
			 : NO_FEEDBACK MAIN_OUTPUT

TOGGLE_FEEDBACK_MUTE 	 : TOGGLE MUTE STATUS OF A FEEDBACK PATH

	 SYNTAX	 : TOGGLE_FEEDBACK_MUTE [TARGET] [SOURCE] [OPTION]
	 [OPTION]	 : SEE REGULAR TOGGLE_MUTE -> SAME OPTIONS APPLY

TOGGLE_FEEDBACK_PHASE	 : TOGGLE PHASE STATUS OF A FEEDBACK PATHSAME AS

	 SYNTAX	 : TOGGLE_FEEDBACK_PHASE [TARGET] [SOURCE] [OPTION]
	 [OPTION]	 : SEE REGULAR TOGGLE_PHASE -> SAME OPTIONS APPLY

FEEDBACK_LEVEL : SET THE LEVEL OF A FEEDBACK PATH

	 SYNTAX	 : FEEDBACK_LEVEL [TARGET] [SOURCE] [LEVEL]
	 [LEVEL] 	 : dB

50PATCH COMMANDS - SLICES

The following commands are used to control SoundSquares mix-slicing
mechanism. A slice contains information for multiple sources - their
locaion on the stage, and volumes.

	 SLICE FORMAT :

		 SLICE_n [INDEX] [COUNT] {DATA}

		 SLICE PARAMETERS :
		
			 S	 : SLICE INDEX
			 X	 : NUMBER OF MEMBER NODES

		 SLICE DATA :

			 A TAB-SEPARATED LIST OF DATA POINTS

	 SLICE STORAGE COMMANDS

	 SLICE_M	 -> SLICE MASTER CONFIGURATION - NAMES OF SLICED NODES
	 SLICE_X 	 -> X-POSIION OF SLICED NODES
	 SLICE_Y	 -> Y-POSTION OF SLICED NODES
	 SLICE_S 	 -> SIZE OF SLICED NODES
	 SLICE_L 	 -> LEVEL OF SLICED NODES

	 -> ALL SLICE STORAGE COMMANDS INCLUDE [INDEX] AND [COUNT]

		 SLICE_M S:1 X:3

	 -> INDICATES SLICE [ONE] MASTER CONTAINS NAMES FOR [3] NODES
		
		 SLICE_X S:2 X:5	 -> X-POSIION OF SLICED NODES

	 -> INDICATES SLICE [TWO] MASTER CONTAINS X-POSITION FOR [5] NODES

STORE_SLICE	 : STORE SOURCE NODES UNDER MARQUEE AS A SLICE

	 SYNTAX	 : STORE_SLICE [INDEX]
	 EXAMPLE	 : STORE_SLICE 7

JUMP_TO_SLICE 	: IMMEDIATE RECALL OF SLICE DATA

	 EXAMPLE	 : JUMP_TO_SLICE 4	

DRIFT_TO_SLICE S:SPEED [INDEX]

	 SYNTAX	 : DRIFT_TO_SLICE [S:SPEED] [INDEX]
	 EXAMPLE	 : DRIFT_TO_SLICE S:0.1 5	

51PATCH COMMANDS - LOADING AND SAVING

LOAD_MACRO_FILE 	 : LOAD MACRO USING FILE OPEN DIALOG

LOAD_MACRO		 : LOAD AND RUN A MACRO FILE
				 FROM A PATH WITHIN PLUGIN’S FOLDER

		 EXAMPLE	 : LOAD_MACRO PATCHES/5.1.txt

SAVE_NOW			 : OVERWRITE THE CURRENT OPEN PATCH
				 USING CURRENT SETUP’S DATA

SAVE_PATCH		 : (SAVE AS)
				 : SAVES CURRENT SETUP TO PATCH VIA FILE SAVE DIALOG

AUTO_SAVE			 : TURN ON/OFF AUTO-SAVE FUNCTION
AUTO_BACKUP		 : TURN ON/OFF AUTO-BACKUP FUNCTION

		 EXAMPLE : AUTO_SAVE ON
		 EXAMPLE : AUTO_BACKUP OFF

	 -> AUTO_SAVE AND AUTO_BACKUP ARE ALSO HANDLED
	 VIA THE GENERIC TOGGLE COMMAND
	 (SEE TOOLBOX AND FEATURES SECTION)

	 -> AUTO_SAVE AND AUTO_BACKUP INTERVAL IS 5 MINUTES

52PATCH COMMANDS - MACRO PANEL

The following commands work with a drawing engine that targets the macro
panel. This can be used to create custom mini-interfaces of buttons,
faders, and text-labels.

DRAW_IN_MACRO	 : Direct the drawing engine to place following commands
			 into the MACRO PANEL

The additional command DRAW_WITH_STAGE is used to instruct the drawing
engine to place elements on top of the STAGE.

In order to be able to create reusable sections of drawing code, the
engine uses a rolling coordinates system which applies an offset to the
drawn nodes. The same is true for the colours of these node elements.

_AT		 : move the drawing location to optional X: and Y:
_AT+		 : positive shift the drawing location by optional X: and Y:
_AT-		 : negative shift the drawing location by optional X: and Y:

	 EXAMPLE	 : _AT X:100 Y:100
			 -> position drawing relative 100,100
			
			 : _AT+ Y:200
			 -> add 200 to the Y drawing offset
			
			 : _AT- X:100
			 -> subtract 100 from the X drawing offset

INK		 : set the ink colour using RGB

	 EXAMPLE	 : INK RED:1.0 GREEN:0.0 BLUE:0.0 L:0.7
	 -> Use red ink with 0.7 alpha
	 -> Ink applies to text labels

PAINT	 : set the paint colour using RGB

	 EXAMPLE	 : PAINT RED:0.0 GREEN:0.0 BLUE:1.0 L:0.8
	 -> Use blue paint with 0.8 alpha
	 -> paint applies to rectangles, buttons, and faders

	 -> for both INK and PAINT commands, the RED: GREEN: BLUE and L:
	 -> parameters are optional, as their impact is cumulative

			 : INK RED:1.0 GREEN:0.5 BLUE:0.0 L:1.0
			 -> creates orange ink with alpha 1.0
			 : INK GREEN:1.0 L:0.5
			 -> the ink is now yellow with alpha 0.5

53PATCH COMMANDS - MACRO PANEL

RECT		 : DRAW A RECTANGLE

	 SYNTAX	 : RECT X: Y: W: H:
	 EXAMPLE	 : RECT X:-100 Y:-50 W:200 H:100

	 -> Draws a rectangle 200x100 positioned at -100,-50
	 -> RELATIVE to the drawing offset as defined by _AT commands

TEXT		 : DRAW TEXT

	 SYNTAX	 : TEXT (ALIGN) [X: Y:] “TEXT”
	 (ALIGN) 	 : _LEFT_ | _CENTRE_ | _RIGHT_	
	 EXAMPLE	 : TEXT _CENTRE_ X:100 Y:50 “HELLO WORLD”

	 -> Draws the text “Hello World” positioned at 100,50
	 -> RELATIVE to the drawing offset as defined by _AT commands	
	 -> Text is centre-aligned
	 -> TEXT command is different to NOTE command -
	 -> NOTE is for user-annotations
	 -> TEXT is for shims, overlays, and additional interface layout

BUTTON	 : DRAW A BUTTON

	 SYNTAX	 : BUTTON [X: Y: W: H] “COMMAND STRING”
	 EXAMPLE	 : BUTTON X:0 Y:0 W:50 H:12 “MUTE (0)”

	 -> button uses alpha*0.5 For regular state
	 -> and alpha*1.0 For mouse_over
	 -> when pressed, the button executes “MUTE (0)”
	 -> in the root scripting context

54ASM COMMANDS

In the following listing,

	 [A] and [B] are previously declared registers/variables
	 [i] is an immediate value written into the body of the script
	 [NAME] is an immediate string
	 [LABEL] is a jump label notated as either >>LABEL or ->LABEL
	 [

VARIABLE/REGISTER DECLARATION

	 INT			 [NAME] 	 [INT]			 int i = 123;
	 FLOAT			 [NAME] 	 [FLOAT]		 float f = 123.456;
	 STRING		 [NAME] 	 [STRING]		 string s = “hello world”;
	 DEL			 [A]					 delete [] A;

FLOW CONTROL

	 CALL			 [LABEL]				 do_this();
	 GOTO			 [LABEL]				 goto label;
	 JUMP			 [LABEL]				 pause(); goto label;
	 RTN								 return;
	 END								 exit();
	 PAUSE			 [i]					 pause(milliseconds);
	 NOP								 do_nothing();

INDIRECTION

	 ALIAS			 [NAME]	 [POINTER_NAME]

		 float *NAME = &POINTER_NAME;
		 int	 *NAME = &POINTER_NAME;

STACK OPERATIONS

	 PUSH			 [A]					 stack[n] = A;
	 PUSHI			 [TYPE] 	 [i]			 stack[n] = (TYPE)immediate;

	 POP			 [A]					 A = stack[n];
	 POPI			 [A]					 new(A) = stack[n];

	 MOV			 [A] 	 [B]				 A = B;
	 MOVI			 [A] 	 [i]				 A = i;

	 SWAP			 [A] 	 [B]				 C = A; A = B; B = C;

THREADING

	 DISPATCH		 [LABEL] [NAME]

55ASM COMMANDS

		 run_new_thread_from(&ENTRY_POINT, THREAD_NAME);

	 READY			 [ENTRY_POINT] 	 [THREAD_NAME]

		 setup_new_thread_from(&ENTRY_POINT, THREAD_NAME);

	 TELL			 [THREAD NAME] 	 [COMMAND]		 thread[n].do(COMMAND);

	 TERMINATE		 [THREAD NAME]				 thread[n].die();
				 -> if no [THREAD_NAME] specified, all threads terminate

	 PROTECT_THREAD							 thread.isSpecial = true;
	 UNPROTECT_THREAD						 thread.isSpecial = false;

	 THREAD_INFO							 print(thread_info);
				 -> PROXY : TI

NUMERICAL OPERATIONS

	 INC			 [A]						 A++;
	 DEC			 [A]						 A--;
	 ADD			 [A] [B]					 A += B;
	 ADDI			 [A] [i]					 A += i;
	 SUB			 [A] [B]					 A -= B;
	 SUBI			 [A] [i]					 A -= i;
	 MUL			 [A] [B]					 A *= B;
	 MULI			 [A] [i]					 A *= i;
	 DIV			 [A] [B]					 A /= B;
	 DIVI			 [A] [i]					 A /= i;
	 NEG			 [A]						 A *= -1;
	 TOG			 [A]						 A = A == 0 ? 1 : 0;
	 SQRT			 [A]						 A = sqrt(A);
	 RND			 [A]						 A = round(A);
	 MIN			 [A] [B]					 A = min(A, B);
	 MINI			 [A] [i]					 A = min(A, i);
	 MAX			 [A] [B]					 A = max(A, B);
	 MAXI			 [A] [i]					 A = max(A, i);
	 FLOOR			 [A]						 A = floor(A);
	 CEIL			 [A]						 A = ceil(A);
	 ROUND			 [A] [i]					 A = round(A, i);
		 -> # DECIMAL POINTS [i] IS OPTIONAL
	 SIN			 [A]						 A = sin(A);
	 SIND			 [A]						 A = sin(A*(PI/180));
	 COS			 [A]						 A = cos(A);
	 COSD			 [A]						 A = cos(A*(PI/180));
	 TAN			 [A]						 A = tan(A);
	 TAND			 [A]						 A = tan(A*(PI/180));
	

56ASM COMMANDS

COMPARISON OPERATIONS

	 CMP_EQ		 [A] [B] [COMMAND]			 if(A == B) COMMAND();
	 CMP_EQI		 [A] [i] [COMMAND]			 if(A == i) COMMAND();
	 CMP_NE		 [A] [B] [COMMAND]			 if(A != B) COMMAND();
	 CMP_NEI		 [A] [i] [COMMAND]			 if(A != i) COMMAND();
	 CMP_LT		 [A] [B] [COMMAND]			 if(A < B) COMMAND();

	 CMP_LTI		 [A] [i] [COMMAND]			 if(A < i) COMMAND()
	 CMP_LTE		 [A] [B] [COMMAND]			 if(A <= B) COMMAND()
	 CMP_LTEI		 [A] [i] [COMMAND]			 if(A <= i) COMMAND()
	 CMP_GT		 [A] [B] [COMMAND]			 if(A > B) COMMAND();
	 CMP_GTI		 [A] [i] [COMMAND]			 if(A > i) COMMAND();
	 CMP_GTE		 [A] [B] [COMMAND]			 if(A >= B) COMMAND();
	 CMP_GTEI		 [A] [i] [COMMAND]			 if(A >= i) COMMAND();

LOGICAL
	
	 NOT			 [A]						 A = !A;
	 AND			 [A] [B]					 A = A && B;
	 NAND			 [A] [B]					 A = !(A && B);
	 OR			 [A] [B]					 A = A || B;
	 NOR			 [A] [B]					 A = !(A || B);
	 XOR			 [A] [B]					 A = A ^ B

# BITWISE	
	
	 SHL			 [A] [B]					 A = A << B;
	 SHLI			 [A] [i]					 A = A << i;
	 SHR			 [A] [B]					 A = A >> B;
	 SHRI			 [A] [i]					 A = A >> i;

STRING

	 STREVAL		 [A]						 A = eval(A);

57ASM COMMANDS

PLUS A WHOLE LOAD OF UNDOCUMENTED COMMANDS AROUND COLOUR, SERIAL, AND
VARIOUS OTHER THINGS ...

POKE-ABOUT AND LISTEN TO THE CLI TRACER TO SEE WHAT ELSE YOU MIGHT FIND ;)

58

59

60

61

